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Abstract 

 

The cognitive mechanisms underlying behavior are often dynamic, shifting gradually or abruptly 

over time scales spanning years, to weeks, to minutes. Whether drug-induced changes in learning 

and decision-making follow similarly dynamic patterns remains unclear. To address this, we 

apply a reinforcement learning model to choice data from rats performing a two-step task for oral 

fentanyl and sucrose rewards. The model contains a set of agents with their own learning and 

decision-making rules that differentially influence choice, and, critically, each agent’s 

contribution to choice is allowed to vary across latent states that fluctuate over time. Using a 

dimensionality reduction method to align latent states across subjects, we identified three distinct 

states reflecting mixtures of goal-directed, habitual, and novelty-driven strategies. We found that 

acute fentanyl reward increased the frequency of transitions out of a goal-directed state into a 

habit-driven state, while chronic fentanyl exposure selectively diminished goal-directed control 

within a habit-dominant state, independent of sex. Together, these results demonstrate that 

fentanyl reshapes both the dynamics and cognitive architecture of decision-making, underscoring 

the utility of latent-state modeling combined with dimensionality reduction for uncovering drug-

driven cognitive changes. 
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Introduction 

 

The habit theory of addiction posits that drug-seeking becomes involuntary over time, with drug-

paired stimuli eliciting drug-seeking directly and bypassing goal-directed assessment of future 

outcomes (Robinson & Berridge, 2025). This framework has come under scrutiny because it has 

remained unclear whether maladaptive drug seeking is explained predominantly by habit 

formation or an alternative mechanism (Hogarth, 2020). Embedded within this skepticism is the 

issue of how habits are commonly measured, with the standard procedure being instrumental 

conditioning of a single action followed by outcome devaluation and then testing in extinction 

(e.g. Adams, 1982; Giovanniello et al., 2025; Thrailkill & Bouton, 2015). The drawbacks of this 

method are relevant for the translational validity of habits: real-world drug seeking rarely takes 

place in the absence of choice, and rarely during extinction (Vandaele & Ahmed, 2021).  

 

We recently devised an experiment to overcome these limitations and ask whether drug seeking 

is habitual during a reinforced choice setting (Garr et al., 2025). Rats were trained to perform a 

two-step task to earn either oral fentanyl or sucrose rewards across many sessions, and then 

given a brief number of alternating sessions with fentanyl or sucrose. The two-step task allows 

for separate measurements of habit and goal-directed action by analyzing the frequency with 

which subjects will repeat a choice as a function of recent trial events (Daw et al., 2011; Miller et 

al., 2017). An index of goal-directed action can be computed as the degree of model-based (MB) 

choice, where choice is guided by knowledge of how often an action transitions to a given state 

as well as the reward probabilities within each state. Two indices of habit can also be computed: 

one termed model-free (MF) choice, where choice is based on whether an action was recently 

rewarded without accounting for the route connecting action to reward, and another termed 

perseveration, where a choice is repeated regardless of prior trial events. We found that the 

expression of habit depended on the history of fentanyl exposure and sex: while female rats 

given extensive training with fentanyl showed high degrees of MF bias and perseveration that 

carried over to fentanyl and sucrose seeking, females given brief fentanyl training showed a high 

degree of perseveration that was specific to fentanyl seeking. 

 

While these findings are informative, a more thorough exploration of the data would benefit 

from computational modelling. Modelling has been part of the two-step task since its inception 

(Daw et al., 2011), and the utility of modelling comes from its ability to go beyond surface-level 

behavioral summaries and instead estimate latent cognitive variables that govern choice. When 

modelling choice data from the two-step task, it is common to specify a set of learning and 

decision rules, and then evaluate which one most closely matches trial-to-trial choices. In this 

way, choices are seen as the product of a single algorithm, or a weighted hybrid of algorithms, 

whose parameters remain constant through time. However, recent work has developed a method 

for identifying time-varying latent states that give rise to distinct decision-making strategies 

(Calhoun et al., 2019; Ashwood et al., 2022). This approach involves mapping perceptual inputs 

to a common behavioral output, where the mapping between inputs and output are allowed to 

vary across hidden states that must be inferred by the experimenter using an unsupervised 

method. This approach was recently extended to replace perceptual inputs with cognitive 
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variables generated from reinforcement learning models (Venditto et al., 2024). Applying this 

approach to choice data from rats performing a two-step task, it was shown that a three-state 

model characterizes choice behavior in a manner superior to a single-state model. By observing 

how the state probabilities changed over the course of a session, combined with examining the 

agent weights within each state, the authors were able to infer that behavior follows a common 

trajectory: initial exploration of the state transitions, followed by a predominantly model-based 

strategy, and then a more disengaged perseverative state toward the end of the session. 

 

In the present study, we applied this modelling framework, termed a mixture-of-agent hidden 

Markov model (MoA-HMM), to investigate how fentanyl reinforcement history shapes decision-

making strategies in rats. We used an MoA-HMM in which each latent state is defined by a 

unique combination of weights on reinforcement learning agents (MB, MF, perseveration, side 

bias, and transition preference). To solve the problem of how to best align the states across 

subjects, we turned to dimensionality reduction to identify a set of common low-dimensional 

components that could be used to sort latent states and compare them across rats in a principled, 

data-driven way. We found that a three-state model was the best fit for the majority of rats, and 

each state was defined by a distinct set of agent weights. In addition, we found that acute 

fentanyl reward altered how often rats transitioned out of a goal-directed state, while chronic 

fentanyl diminished the influence of MB choice in a state-dependent manner. 

 

Methods 

 

Data set 

 

The data analyzed here have been reported previously (Garr et al., 2025). Long-Evans rats were 

initially trained for 22-30 daily sessions to perform a two-step decision-making task to earn oral 

fentanyl (25 µg/ml; 9 males, 8 females) or sucrose solution (100 mg/ml; 10 males, 8 females). 

During the task, rats were required to initiate trials by holding their nose in a center magazine 

and then making a choice between left and right nose-poke ports. Choices triggered the insertion 

of a lever in the opposite side of the chamber, and pressing the lever delivered probabilistic 

reward. One lever was always set to 0.8 reward probability and the other to 0.2, and the 

probabilities switched in blocks of 20-35 trials. Each nose port was predominantly associated 

with different levers, with transition probabilities fixed at 0.8 and 0.2 (common and rare 

transitions, respectively). Reward size was fixed at 0.05 ml. During each session, the fentanyl 

group was free to earn up to 150 rewards, while the sucrose group was limited to the average 

number earned by the fentanyl group during the previous session. This was done to equate the 

average number of rewards between groups.  

 

Following training, all rats received alternating sessions with fentanyl and sucrose rewards (6 

sessions per reward, 12 total). Sessions with the unfamiliar reward occurred in an altered context 

with lemon scent and honeycomb textured floors. The maximum number of sucrose rewards per 

session per rat was set to the number of fentanyl rewards earned during the previous session. 
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Analyses were conducted on the final six sessions of alternating rewards (i.e. 3 sessions per 

reward type).  

 

Reinforcement learning model 

 

Choice behavior was modeled using a mixture-of-agents hidden Markov model (MoA-HMM). 

Five agents simultaneously and independently updated choice values on every trial according to 

their own rules (see Venditto et al., 2024 for rationale behind learning rules). 

 

Model-based  

 

𝑄𝑀𝐵(𝑦) ← {
(1 −  𝛼𝑀𝐵)𝑄𝑀𝐵(𝑦) +  𝑟𝑡, 𝑦 =  𝑦𝑡(𝑐𝑜𝑚𝑚𝑜𝑛), 𝑦 ≠ 𝑦𝑡(𝑟𝑎𝑟𝑒)

(1 −  𝛼𝑀𝐵)𝑄𝑀𝐵(𝑦),                   𝑦 ≠  𝑦𝑡(𝑐𝑜𝑚𝑚𝑜𝑛), 𝑦 = 𝑦𝑡(𝑟𝑎𝑟𝑒)
 

 

where αMB is the model-based learning rate and rt is the trial outcome (1 for reward and -1 for 

omission). y and t are choice options and trials, respectively.  

 

Model-free  

 

𝑄𝑀𝐹(𝑦) ← {
(1 −  𝛼𝑀𝐹)𝑄𝑀𝐹(𝑦) +  𝑟𝑡, 𝑦 =  𝑦𝑡

(1 − 𝛼𝑀𝐹)𝑄𝑀𝐵(𝑦),                   𝑦 ≠  𝑦𝑡
 

 

where αMf is the model-free learning rate.  

 

Perseveration  

 

𝑄𝑝𝑒𝑟𝑠𝑒𝑣(𝑦) ← {
(1 −  𝛼𝑝𝑒𝑟𝑠𝑒𝑣)𝑄𝑝𝑒𝑟𝑠𝑒𝑣(𝑦) +  1, 𝑦 =  𝑦𝑡

(1 −  𝛼𝑝𝑒𝑟𝑠𝑒𝑣)𝑄𝑝𝑒𝑟𝑠𝑒𝑣(𝑦),                   𝑦 ≠  𝑦𝑡

 

 

where αpersev is the perseveration learning rate. 

 

Side bias 

 

𝑄𝑏𝑖𝑎𝑠(𝑦) ← {
1, 𝑦 =  𝑙𝑒𝑓𝑡

−1, 𝑦 = 𝑟𝑖𝑔ℎ𝑡
 

 

Transition preference  

 

𝑄𝑇𝑃(𝑦) ← {
(1 −  𝛼𝑇𝑃)𝑄𝑇𝑃(𝑦) +  1, 𝑦 =  𝑦𝑡(𝑐𝑜𝑚𝑚𝑜𝑛), 𝑦 ≠ 𝑦𝑡(𝑟𝑎𝑟𝑒)
(1 −  𝛼𝑇𝑃)𝑄𝑇𝑃(𝑦),                   𝑦 ≠  𝑦𝑡(𝑐𝑜𝑚𝑚𝑜𝑛), 𝑦 = 𝑦𝑡(𝑟𝑎𝑟𝑒)

 

 

where αTP is the transition preference learning rate. 
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These learning rules were adapted from Venditto et al. (2024), where each agent was assigned 

different names than we use here: MB reward (MB), MF reward (MF), MF choice (perseveration), 

bias (side bias), and MB choice (transition preference).  

 

Choice probabilities are determined by passing each agent’s weighted choice value through a 

softmax function that is conditioned on a latent state z:  

 

𝑝(𝑦|𝑄, 𝑧) =  
exp (∑ 𝛽𝐴

𝑧𝑄𝐴(𝑦))𝐴

∑ exp (∑ 𝛽𝐴
𝑧𝑄𝐴(𝑦′))𝐴𝑦′

 

 

where 𝛽𝐴
𝑧

 is the weight assigned to agent A in state z. The learning rate parameters were constant 

across states. Latent states were defined by an initial state probability π and a state transition 

probability matrix P. Models were fit using expectation maximization, which generated trial-by-

trial probabilities for each latent state (Venditto et al., 2024).  

 

The MoA-HMM was fit using maximum a posteriori estimation. Model parameters (θ) included 

the initial latent state probabilities (π), the state transition probability matrix (P), state-specific 

agent weights (β), and learning rates (αMB, αMF, αpersev, αTP). Agent weights, initial state 

probabilities, and transition probabilities were initialized uniformly over [0,1], and learning rates 

were initialized uniformly over [.05, .95].  

 

Model fitting was performed by maximizing a regularized log-likelihood: 

 

ℒ(𝜃) = ∑ log 𝑝 (𝐷𝑡|𝜃)  +  𝜆‖𝜃‖2 

𝑡

 

 

where 𝑝(𝐷𝑡|𝜃)is the probability of the observed choice on trial 𝑡, and λ=0.01is the L2 penalty 

coefficient. Optimization stopped when the objective change reached below 1e-5, or after 200 

iterations. Model fitting was done separately for fentanyl and sucrose sessions, concatenating 

over sessions. The log-likelihood was used to calculate the Akaike information criterion (AIC), 

which estimates the model fit: 

 

AIC = 2k - 2ℒ(𝜃) 

 

where k = number of free parameters. The number of free parameters was determined by the 

number of initial state probabilities (π), the number of cells in the transition probability matrix P, 

the four learning rates (αMB, αMF, αpersev, αTP), and the five agent weights (β’s).   

 

Tensor decomposition 

 

Tensor component analysis (TCA) was performed using the tensor toolbox for MATLAB. A 

four-dimensional matrix was constructed using the data generated from a three-state model fit: a 

35 x 6 x 5 x 9 matrix (subjects x sessions x agents x session time bins). Sessions were divided 
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into 9 time bins of equal numbers of trials per individual session because each rat performed 

different numbers of trials. Each data point in the matrix represented a subject-, session-, and 

bin-specific agent weight. Bin-specific agent weights were obtained by multiplying the agent 

weight in state z by the mean probability of state z in a given bin, and then averaging over states. 

States were averaged together so that state labels would not influence the TCA output.  

 

We fit a tensor CANDECOMP/PARAFAC decomposition model to identify a set of low-

dimensional components describing variability along each of the four axes. Model fits were 

performed 5000 times, each one with a different random seed, for each of 9 components. To 

determine the optimal number of components, we computed a normalized reconstruction error 

and a similarity score for each iteration of model fitting (Willams et al., 2018). The 

reconstruction error reflects how accurately the tensor decomposition can reconstruct the data 

and decreases with the number of components. The similarity score reflects how similar each 

iteration of tensor decomposition is to the one with the lowest reconstruction error, and gives a 

sense of how fickle the model is with regard to the initialization parameters.  

 

Aligning state labels 

 

To align the state labels across subjects and sessions, the TCA output was used to construct an 

agent x component matrix, where the number of components is equivalent to the number of 

states. This was done individually for each rat and each session type (fentanyl or sucrose) by 

multiplying together the agent loadings, mean session loadings, subject loadings, and λ (scaling 

factor similar to each component’s explained variance). The resulting agent x component matrix 

generated from TCA was compared to the agent x state matrix generated from the MoA-HMM 

by building a cost matrix: 

 

𝑐𝑜𝑠𝑡𝑖,𝑗 = ∑(𝑀𝑜𝐴𝑘,𝑖 − 𝑇𝐶𝐴𝑘,𝑗)
2

𝑛

𝑘=1

 

 

where element (i,j) is the squared difference between the i-th column of the MoA agent x state 

matrix and the j-th column of the TCA agent x component matrix, summed over all rows k. We 

then used the Munkres assignment algorithm (Munkres, 1957) to find which permutation of the 

agent x state matrix minimized the cost.  

 

Statistical analysis 

 

Statistical analyses were conducted using mixed-model analysis of variance (ANOVA) with a 

Type I error rate of 0.05. Within-subject variables (e.g. session reward) were always evaluated 

jointly with between-subject variables (i.e. training group and sex). Significant interactions were 

followed up with simple main effects tests. Agent weights were first multiplied by their 

respective session-wide state probabilities before being passed through ANOVAs to control for 

the relative frequency of agent weights.  
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Results 

 

A multi-latent state model describes rat decision-making but presents a problem for state 

alignment 

 

To probe whether a multi-latent state model could describe rat decision-making during 

performance of a two-step task, we fit a series of MoA-HMM models while varying the number 

of latent states (Venditto et al., 2024). Within each state, there are five reinforcement learning 

agents competing for control of choice: MB, MF, perseveration, side bias, and transition 

preference (TP). The latter captures a preference for common vs. rare state transitions, a metric 

of novelty preference. The influence of each agent on trial-by-trial choice is quantified by their 

weights, which are allowed to vary between states. A 3-state model provided the best fit, with 

91% of rats showing an improvement in model fit compared to a single state model (Figure 1A). 

Reward type (fentanyl or sucrose) did not affect how model fit varied as a function of number of 

states (reward x state, p = 0.918), although sucrose sessions showed an overall superior fit 

compared to fentanyl sessions (reward, p = 0.036). There were no interactions with training 

group or sex.  

 

The latent states are assigned arbitrary labels, and sorting the states is necessary to compare them 

across subjects. In an initial attempt to sort the states, we followed the steps from Venditto and 

colleagues (2024). Specifically, we labeled state 1 as the state with the highest initial probability 

per session, while states 2 and 3 were sorted in descending order of MB weights. Unlike 

Venditto et al. (2024), who also fit an MoA-HMM model to data from rats performing a two-step 

task, we observed minimal common state dynamics from our rat data: state 1 started with the 

highest probability and decreased slightly, but remained relatively high throughout each session, 

while state 2 probability increased slightly (Figure 1B; state, p = .006; state x bin, p < .001). 

This does not mean state dynamics were non-existent (Figure S1), but that it was difficult to 

extract common dynamics across individuals. Furthermore, although averaging state 

probabilities into bins and across subjects gives the impression of a highly probabilistic set of 

states, the majority of individual trials were composed of a high probability state. Specifically, 

the proportion of trials containing a state probability greater than 0.66 (the threshold for 

dominance) was 63%, on average (21% per state). State probability was influenced by the type 

of instrumental reward (reward x state, p = 0.025), with state 1 being slightly more probable 

during sucrose versus fentanyl sessions (p = 0.004; mean difference = 0.05). State transition 

probabilities were not affected by reward type (p = 0.564), but there was an overall pattern to 

state transitions (Figure 1C; previous state x current state, p < .001). Specifically, there was a 

tendency to avoid remaining in the same state from trial to trial, and state 3 was more likely to 

transition to state1 than to state 2 (p < 0.001).  

 

[Insert Figure 1 here] 
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To understand the defining features of each state, we examined the state-varying agent weights. 

The states were largely defined by differences in MB weights, which was partly by design (agent 

x state, p < 0.001). State 1 was associated with an intermediate MB weight, state 2 with a high 

MB weight, and state 3 with a negative MB weight (Figure 1D; p’s < 0.001). The MF weights 

also differed by state (state 1 > states 2 and 3; p’s < .012), as did transition preference weights 

(state 2 < state 3; p = .015). We also found that MB weights were affected by reward and sex in a 

state-dependent manner (reward x sex x state, p = .044), with females showing greater MB 

weights during sucrose versus fentanyl sessions in states 1 and 2 (Figure S2). Overall, this 

sorting scheme revealed a set of states distinguished by a strong reliance on reward-driven habits 

(state 1), goal-directed planning (state 2), and transition-driven habits (state 3), with fentanyl 

reward acutely driving down goal-directed planning in females in a state-dependent manner. 

 

An alternative method for aligning latent states 

 

This sorting scheme imposes structure such that the states are easily defined, but because they 

are defined in an arbitrary way, it raises questions about whether the results are meaningful. To 

approach state sorting in a more data-driven way, we turned to tensor component analysis 

(TCA). TCA is an unsupervised method that identifies a set of low-dimensional components that 

describe variability along a set of axes, and unlike the commonly used principal component 

analysis, it can take as input high-dimensional data arrays (Drieu et al., 2025; Williams et al., 

2018). TCA can potentially be used to help align the latent states across rats so that they reflect 

shared underlying structure. We fed TCA a high-dimensional matrix consisting of subject-, 

session-, time bin-, and agent-specific weights (see Methods). State labels were removed by 

averaging over states, as our goal was to use the resulting low-dimensional components to align 

state labels later, and we therefore did not wish to bias the results using the original arbitrary 

state labels. TCA requires identifying the optimal number of components by consulting two 

metrics: the reconstruction error and the mean similarity score (Figure 2A). Examination of 

these metrics indicated that three components was optimal. This finding is convenient because 

aligning the states with the TCA output requires the number of components to match the number 

of states (see below).  

 

The TCA output gives component-specific loadings for each dimension of the input matrix: 

individual subjects, individual sessions, the five agents, and the session time bins (Figure 2B). 

The agent loadings provided a picture of how each component can be defined: component 1 was 

defined by a high MB loading and a modest MF loading, component 2 was dominated by a high 

MB loading, and component 3 was defined by high MF and perseveration loadings and a 

strongly negative side bias loading. Interestingly, fentanyl and sucrose sessions did not show 

much session-to-session variation but did show different loadings on each component: while 

fentanyl sessions showed a higher loading on component 3, sucrose sessions showed a higher 

loading on component 2 (Figure 2B).  

 

[Insert Figure 2 here] 
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The three components identified by TCA were then used to sort the latent states from the MoA-

HMM model. This was accomplished by finding the state permutation that maximized the 

similarity between the agent x state matrix and the agent x component matrix for each individual 

subject and session type (see Methods; see also Figure 3A,B).  

 

Aligning latent states with shared underlying dynamics produces a rich pattern of state-

dependent decision-making mechanisms  

 

Using the newly sorted latent states, we ran statistical tests on the time-varying state probabilities 

(Figure 3C), the state transition matrices (Figure 3D), and the state-varying agent weights 

(Figure 3E) to first probe for any effects that generalized across session reward, prior training 

history, and sex. Aside from a small increase and decrease in state 1 and 2 probabilities, 

respectively, in the middle of the session (state x bin, p = 0.045), there were no systematic 

changes in the state probabilities across time. Nor was there any one dominant state (state, p = 

0.899). Once again, although state probabilities were time invariant and roughly uniform when 

averaged across rats, the majority of individual trials were composed of a high probability state 

(trials with a state probability > 0.66: 63% in total; 22% for state 1, 21% for state 2, 20% for 

state 3).  

 

The state transition matrices once again showed a strong tendency to avoid remaining in the 

same state from trial to trial (previous state x current state, p = 0.019). The state-varying agent 

weights also showed a distinct pattern (agent x state, p = 0.026). State 1 was distinguished by a 

strong reliance on habits, with perseveration dominating ([perseveration > MF] > all other 

agents, p’s < 0.044). State 2 was associated with a mix of habits and goal-directed control (MB ≈ 

MF ≈ perseveration, p’s > 0.133). State 3 was very similar to state 1 with one exception: while 

state 1 was associated with a negative weight on the transition preference agent, implying a 

preference to explore the rare transition states, state 3 was associated with a positive weight 

(state 1 < state 3, p = 0.032). Taken together, this sorting scheme revealed a set of states 

distinguished by a mix of habits and novelty preference (state 1), a mix of habits and goal-

directed planning (state 2), and a mix of habits and novelty avoidance (state 3). This sorting 

scheme also produced greater within-state variances of agent weights compared to the more 

arbitrary method of sorting states (method, p < .001), which confirms that using TCA to sort 

latent states can reveal a richer pattern of state-dependent learning and decision-making.  

 

[Insert Figure 3 here] 

 

Acute fentanyl increases transitions out of goal-directed states, while chronic fentanyl decreases 

model-based weights in a state-dependent manner 

 

Next, we looked for any effects of drug—both acute and chronic, evaluated by effects of session 

reward and training group, respectively. Time-varying state probabilities were not affected by 

these variables (p’s > 0.103). However, the instrumental reward affected how rats moved 

between states (reward x previous state x current state, p = .011). The state that showed the most 
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changes in transitions was state 2, the more goal-directed state (Figures 3E and 4A). During 

sucrose sessions, the transition probability between state 2 and all other states was roughly 

uniform. But during fentanyl sessions, rats showed a strong preference for transitioning out of 

this more goal-directed state and into the predominantly perseverative state 1 (s2 → s1: 

fentanyl > sucrose, p = 0.041; s2 → s2: fentanyl < sucrose, p = 0.037). This implies that fentanyl 

reward reduces the tendency to persist within the more goal-directed state compared to sucrose. 

 

[Insert Figure 4 here] 

 

When examining agent weights, we found that fentanyl reinforcement history, as represented by 

group, had a significant effect on MB weights in a state-dependent manner (state x group, p = 

0.011; Figure 4B). Specifically, rats given extensive prior training with fentanyl showed a low 

MB weight in state 1 compared to rats given extensive training with sucrose. To confirm that this 

finding holds up in the empirical choice data, we regressed a binary MB coder against trial-by-

trial state probabilities. The MB coder was constructed by assigning a 1 to all cases where the rat 

repeated choices following reward-common and omission-rare trials and switched choices 

following reward-rare and omission-common trials, while a 0 was assigned to all other cases. We 

found a pattern of coefficients that qualitatively matched the pattern of state-dependent MB 

weights (Figure 4C). A comparison of state 1 coefficients between training groups came up 

short of statistical significance (p = 0.077), which is not surprising given that MB weights 

compete with other agents for control of behavior. These results imply that an extensive history 

with fentanyl drives down the influence of MB decision-making in a state-dependent manner. 

Notably, we previously found that chronic fentanyl attenuates MB-related behavior in a session-

wide manner only for females (Garr et al., 2025). Here, we did not find that sex interacted with 

the group- and state-dependent change in MB weights (Figure S3; p = 0.541), implying that 

chronic fentanyl induces a cognitive impairment broader than previously thought.  

 

Discussion 

 

Modelling learning and decision-making as occurring within discrete latent states can help with 

avoiding model misspecification, allowing more accurate interpretations of the cognitive 

mechanisms underlying behavior (Urai, 2025). In this study, we applied an MoA-HMM to 

choice data from rats performing a two-step task for either sucrose or fentanyl, aiming to uncover 

how latent cognitive states and fentanyl reinforcement history interact to shape behavior. We 

found that a three-state model best captured behavioral patterns for the majority of subjects. By 

using TCA to align latent states across rats in a data-driven manner, we were able to expose a 

rich structure in the dynamics of decision-making—one that was obscured by a more 

conventional, arbitrary state-sorting method. Specifically, each state was characterized by a 

unique profile of reinforcement learning agent weights that revealed broadly different mixtures 

of goal-directed, habitual, and novelty seeking strategies.   

 

A major finding was that fentanyl reward acutely destabilized goal-directed states, while chronic 

fentanyl suppressed MB control in a state-dependent manner. During sessions reinforced with 
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fentanyl, rats were more likely to transition out of the more goal-directed state and into a habit-

driven state. This suggests that fentanyl acutely reduces the “stickiness” of MB control, perhaps 

by impairing the stability of computations needed to sustain planning-based strategies. In 

contrast, chronic fentanyl exposure did not alter state dynamics, but rather suppressed MB 

weights within one of the habit dominant states. While our original set of findings emphasized a 

global suppression of MB-related behavior specifically in females given extensive fentanyl 

training (Garr et al., 2025), here we show that there exists a latent cognitive state for which 

chronic fentanyl impairs MB control across both sexes.  

 

A particularly striking finding in the current study was the strong tendency for rats to avoid 

remaining in the same latent state from trial to trial. This is not an artifact of how the states were 

sorted, since consistently small diagonal elements in the state transition matrix are impervious to 

the sorting scheme. This pattern is consistent with our previous finding that rats integrate prior 

trial information over a severely limited time window (Garr et al., 2025; see Figure S1), but 

contrasts with prior findings in which state transitions were not as stochastic and choices 

integrated a broader range of past trials (Ashwood et al., 2022; Venditto et al., 2024). There are 

several potential explanations for this discrepancy. One possible contributor is the type of 

reward: our study involved oral fentanyl. Even in sucrose sessions, the interleaved drug context 

and history of fentanyl exposure, whether brief or prolonged, may have carried over to affect 

behavioral stability. Another important difference between studies lies in the amount of training 

given. The rats from the data set analyzed in the current study (Garr et al., 2025) were given a 

total of 34-42 session (training period and alternating reward phases combined), each with a 

limited number of rewards to control for pharmacological thresholds. In contrast, the rats in the 

data set analyzed by Venditto and colleagues (Miller et al., 2017) were often trained for more 

than 100 sessions. It is conceivable that a longer training period induces stereotyped behavioral 

routines, and that is what possibly accounts for the difference in the pattern of state transitions.  

 

One question that arises from the current analysis is how to infer from behavioral data, without 

post-hoc modelling, the cognitive state that gives rise to fentanyl-induced changes in MB 

control. If the latent cognitive states identified in this study are largely time-invariant and 

uniform in their probabilities, does that mean the expression of MB-impaired behavior by 

chronic fentanyl is completely unpredictable? Averaging over time bins and across individual 

rats obscures the fact that the majority of individual trials contained a high degree of certainty 

regarding state occupancy. For example, the state that gave rise to a group difference in MB 

weights (i.e. state 1) surpassed the threshold as the dominant state on 22% of trials. Although 

these trials appear to be randomly distributed in time, one clue for identifying when they occur 

could lie in rats’ tendencies to repeat choices following rare transitions. Recall that state 1 could 

be distinguished from the other states by a negative weight on the transition preference agent—

indicative of a bias toward repeating choices following rare transitions. A supplemental analysis 

showed that repeating choices after rare transitions could positively predict state 1 probabilities 

in 60% of rats, while the predictive accuracy fell for states 2 and 3 to 37% and 46%, 

respectively. These differences in proportions did not reach statistical significance (χ(2) = 3.74, p 

= 0.15), which means that the preference for rare transitions cannot reliably be used to decode 
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the state—consistent with the negative transition preference weight being just one defining 

feature of state 1. It is possible that pairing a behavioral metric of transition preference with other 

behavioral measures beyond choice (e.g. movement kinematics from video recordings) may 

improve decoding of states.  

 

Finally, this work contributes methodologically by demonstrating how tensor decomposition can 

be integrated with latent state modeling to solve the problem of state alignment across subjects. 

While hidden Markov models provide powerful tools for capturing time-varying behavioral 

modes, they produce arbitrary state labels that prevent comparisons across individuals. Our use 

of TCA to define a common low-dimensional space allowed us to take advantage of shared 

underlying behavioral dynamics to align the states. The fact that this approach yielded greater 

within-state variance of agent weights (relative to arbitrary sorting) further validates its utility, 

showing that data-driven alignment methods can uncover richer, more heterogeneous cognitive 

patterns. We wish to note that an alternative and simpler method for sorting states is to find the 

permutation that minimizes the cross-subject variance of agent weights. In the context of our 

data set, this method would require either averaging over fentanyl and sucrose sessions or 

defining states separately for fentanyl and sucrose sessions without any common reference. In 

contrast, TCA allows us to define states separately for each session type with a common 

reference (i.e. the low-dimensional components).  

 

In summary, this study shows that rat decision-making during a two-step task can be parsed into 

multiple, temporally fluid latent states, each characterized by distinct contributions of learning 

systems. Fentanyl, whether acutely or chronically administered, alters both the dynamics of 

transitioning between these states and the cognitive architecture within them. These findings 

underscore the power of latent-state modeling in behavioral neuroscience and provide new 

insight into how addictive drugs reshape learning and decision-making. 
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Figure 1. MoA-HMM fit and initial state sorting (A) Left: AIC scores are plotted relative to a 

single state model. Grey lines are individual rats. Black line is the mean. A 3-state model yields 

the lowest mean AIC score (lower values indicate better fit). Right: Percentage of rats that show 

smaller AIC score relative to the single state model as a function of number of states. (B) Left: 

State probabilities over normalized session time. Right: mean state probabilities over time. Grey 

lines are individual rats. (C) State transition matrix. Each cell indicates the probability of 

transitioning from a state on trial t-1 to another state on trial t. (D) Mean agent weights are 

shown for each latent state. All data in this figure are averaged across fentanyl and sucrose 

sessions.  
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Figure 2. Tensor component analysis results. (A) Reconstruction errors and similarity scores 

indicate that the optimal number of low-dimensional components is 3. The deceleration in 

reconstruction error slows beyond 3 components, and the similarity score drops sharply after 3. 

(B) Loadings across the 3 components shown separately for subjects, sessions, agents, and bins.  
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Figure 3. Latent state alignment. (A) Illustration of method for combining tensor component 

loadings for one example rat (fentanyl session). The agent-mode loadings are multiplied by the 

mean session loadings, the unique subject loadings, and λ. This yields a 5 x 3 matrix (agent x 

component), shown in B. (B) Left: agent x component matrix produced by A. Middle: Raw agent 

x state matrix from the MoA-HMM model. Right: the sorted agent x state matrix that most 

closely aligns with the agent x component matrix on the left. (C) State probabilities over 

normalized session time. Right: mean state probabilities over time. States are aligned according 

to TCA. (D) State transition matrix when states are aligned according to TCA. (E) Mean agent 

weights are shown for each latent state. States are aligned according to TCA. Data in C-E are 

averaged across fentanyl and sucrose sessions. 
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Figure 4. Drug effects after state alignment. (A) Transition matrices broken down by fentanyl 

and sucrose sessions. Asterisks indicate significant difference between session type. (B) MB 

weights over states, shown separately for groups given either extensive prior fentanyl training or 

sucrose training. Weights are multiplied by their respective session-wide probabilities. (C) 

Regression coefficients where a binary MB coder was predicted by trial-by-trial state 

probabilities.  
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Figure S1. Example rat. (A) Example session showing state probabilities over time. The session 

is truncated for clarity. (B) State transition probability matrix. (C) Agent weights per state. 
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Figure S2. Significant reward x sex x state interaction under the state sorting scheme used by 

Venditto et al. (2024). (A) Each plot shows the state-dependent MB weights (multiplied by their 

respective state probabilities) separately for male (top) and female (bottom) rats during fentanyl 

(left) and sucrose (right) sessions. (B) Simple main effects tests identified the source of the 

interaction as arising from greater MB weights during states 1 and 2 for females reinforced with 

sucrose vs. fentanyl. 
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Figure S3. State 1 MB weights shown separately by sex and training group. Weights are 

multiplied by sate 1 probabilities.  
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